The Stacks project

21.33 Cup product

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K, M$ be objects of $D(\mathcal{O})$. Set $A = \Gamma (\mathcal{C}, \mathcal{O})$. The (global) cup product in this setting is a map

\[ R\Gamma (\mathcal{C}, K) \otimes _ A^\mathbf {L} R\Gamma (\mathcal{C}, M) \longrightarrow R\Gamma (\mathcal{C}, K \otimes _\mathcal {O}^\mathbf {L} M) \]

in $D(A)$. We define it as the relative cup product for the morphism of ringed topoi $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (pt), A)$ as in Remark 21.19.7.

Let us formulate and prove a natural compatibility of the relative cup product. Namely, suppose that we have a morphism $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ of ringed topoi. Let $\mathcal{K}^\bullet $ and $\mathcal{M}^\bullet $ be complexes of $\mathcal{O}_\mathcal {C}$-modules. There is a naive cup product

\[ \text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \longrightarrow f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \]

We claim that this is related to the relative cup product.

Lemma 21.33.1. In the situation above the following diagram commutes

\[ \xymatrix{ f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet \ar[r] \ar[d] & Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*\mathcal{M}^\bullet \ar[d]^{\text{Remark 0B6C}} \\ \text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \ar[d]_{\text{naive cup product}} & Rf_*(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} \mathcal{M}^\bullet ) \ar[d] \\ f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \ar[r] & Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) } \]

Proof. By the construction in Remark 21.19.7 we see that going around the diagram clockwise the map

\[ f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet \longrightarrow Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \]

is adjoint to the map

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to Lf^*Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Lf^*Rf_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \end{align*}

By Lemma 21.19.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \end{align*}

Going around anti-clockwise we obtain the map adjoint to the map

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \\ & \to Lf^*Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \end{align*}

By Lemma 21.19.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \\ & \to f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \end{align*}

Now the proof is finished by a contemplation of the diagram

\[ \xymatrix{ Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} f_*\mathcal{M}^\bullet ) \ar[d] \ar[rr] & & Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \ar[d] \\ Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \ar[d]_{naive} \ar[r] & f^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} f_*\mathcal{M}^\bullet ) \ar[ldd]^{naive} \ar[dd] & f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \ar[dd] \ar[ldd] \\ Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \ar[d] \\ f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) \ar[rd] & \text{Tot}(f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} f^*f_*\mathcal{M}^\bullet ) \ar[d] & \mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} \mathcal{M}^\bullet \ar[ld] \\ & \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} \mathcal{M}^\bullet ) } \]

All of the polygons in this diagram commute. The top one commutes by Lemma 21.18.8. The square with the two naive cup products commutes because $Lf^* \to f^*$ is functorial in the complex of modules. Similarly with the square involving the two maps $\mathcal{A}^\bullet \otimes ^\mathbf {L} \mathcal{B}^\bullet \to \text{Tot}(\mathcal{A}^\bullet \otimes \mathcal{B}^\bullet )$. Finally, the commutativity of the remaining square is true on the level of complexes and may be viewed as the definiton of the naive cup product (by the adjointness of $f^*$ and $f_*$). The proof is finished because going around the diagram on the outside are the two maps given above. $\square$

Lemma 21.33.2. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. The relative cup product of Remark 21.19.7 is associative in the sense that the diagram

\[ \xymatrix{ Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M \ar[r] \ar[d] & Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L) \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M \ar[d] \\ Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*(L \otimes _\mathcal {O}^\mathbf {L} M) \ar[r] & Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L \otimes _\mathcal {O}^\mathbf {L} M) } \]

is commutative in $D(\mathcal{O}')$ for all $K, L, M$ in $D(\mathcal{O})$.

Proof. Going around either side we obtain the map adjoint to the obvious map

\begin{align*} Lf^*(Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M) & = Lf^*(Rf_*K) \otimes _\mathcal {O}^\mathbf {L} Lf^*(Rf_*L) \otimes _\mathcal {O}^\mathbf {L} Lf^*(Rf_*M) \\ & \to K \otimes _\mathcal {O}^\mathbf {L} L \otimes _\mathcal {O}^\mathbf {L} M \end{align*}

in $D(\mathcal{O})$. $\square$

Lemma 21.33.3. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. The relative cup product of Remark 21.19.7 is commutative in the sense that the diagram

\[ \xymatrix{ Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L \ar[r] \ar[d]_\psi & Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L) \ar[d]^{Rf_*\psi } \\ Rf_*L \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*K \ar[r] & Rf_*(L \otimes _\mathcal {O}^\mathbf {L} K) } \]

is commutative in $D(\mathcal{O}')$ for all $K, L$ in $D(\mathcal{O})$. Here $\psi $ is the commutativity constraint on the derived category (Lemma 21.48.5).

Proof. Omitted. $\square$

Lemma 21.33.4. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and $f' : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}'')$ be morphisms of ringed topoi. The relative cup product of Remark 21.19.7 is compatible with compositions in the sense that the diagram

\[ \xymatrix{ R(f' \circ f)_*K \otimes _{\mathcal{O}''}^\mathbf {L} R(f' \circ f)_*L \ar@{=}[rr] \ar[d] & & Rf'_*Rf_*K \otimes _{\mathcal{O}''}^\mathbf {L} Rf'_*Rf_*L \ar[d] \\ R(f' \circ f)_*(K \otimes _\mathcal {O}^\mathbf {L} L) \ar@{=}[r] & Rf'_*Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L) & Rf'_*(Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L) \ar[l] } \]

is commutative in $D(\mathcal{O}'')$ for all $K, L$ in $D(\mathcal{O})$.

Proof. This is true because going around the diagram either way we obtain the map adjoint to the map

\begin{align*} & L(f' \circ f)^*\left(R(f' \circ f)_*K \otimes _{\mathcal{O}''}^\mathbf {L} R(f' \circ f)_*L\right) \\ & = L(f' \circ f)^*R(f' \circ f)_*K \otimes _\mathcal {O}^\mathbf {L} L(f' \circ f)^*R(f' \circ f)_*L) \\ & \to K \otimes _\mathcal {O}^\mathbf {L} L \end{align*}

in $D(\mathcal{O})$. To see this one uses that the composition of the counits like so

\[ L(f' \circ f)^*R(f' \circ f)_* = Lf^* L(f')^* Rf'_* Rf_* \to Lf^* Rf_* \to \text{id} \]

is the counit for $L(f' \circ f)^*$ and $R(f' \circ f)_*$. See Categories, Lemma 4.24.9. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FPJ. Beware of the difference between the letter 'O' and the digit '0'.