Lemma 21.33.3. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. The relative cup product of Remark 21.19.7 is commutative in the sense that the diagram

is commutative in $D(\mathcal{O}')$ for all $K, L$ in $D(\mathcal{O})$. Here $\psi $ is the commutativity constraint on the derived category (Lemma 21.48.5).

## Comments (0)