Processing math: 100%

The Stacks project

Lemma 21.33.2. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') be a morphism of ringed topoi. The relative cup product of Remark 21.19.7 is associative in the sense that the diagram

\xymatrix{ Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M \ar[r] \ar[d] & Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L) \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M \ar[d] \\ Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*(L \otimes _\mathcal {O}^\mathbf {L} M) \ar[r] & Rf_*(K \otimes _\mathcal {O}^\mathbf {L} L \otimes _\mathcal {O}^\mathbf {L} M) }

is commutative in D(\mathcal{O}') for all K, L, M in D(\mathcal{O}).

Proof. Going around either side we obtain the map adjoint to the obvious map

\begin{align*} Lf^*(Rf_*K \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*L \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*M) & = Lf^*(Rf_*K) \otimes _\mathcal {O}^\mathbf {L} Lf^*(Rf_*L) \otimes _\mathcal {O}^\mathbf {L} Lf^*(Rf_*M) \\ & \to K \otimes _\mathcal {O}^\mathbf {L} L \otimes _\mathcal {O}^\mathbf {L} M \end{align*}

in D(\mathcal{O}). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.