Lemma 15.85.5. Consider a cocartesian diagram of rings
\xymatrix{ B \ar[r] & B' \\ A \ar[r] \ar[u] & A' \ar[u] }
If A \to B and A' \to B' are local complete intersections as in Definition 15.33.2, then the kernel of H^{-1}(\mathop{N\! L}\nolimits _{B/A} \otimes _ B B') \to H^{-1}(\mathop{N\! L}\nolimits _{B'/A'}) is a finite projective B'-module.
Proof.
By Lemma 15.85.4 the complexes \mathop{N\! L}\nolimits _{B/A} and \mathop{N\! L}\nolimits _{B'/A'} are perfect of tor-amplitude in [-1, 0]. Combining Lemmas 15.85.1, 15.74.9, and 15.66.13 we have \mathop{N\! L}\nolimits _{B/A} \otimes _ B B' = \mathop{N\! L}\nolimits _{B/A} \otimes _ B^\mathbf {L} B' and this complex is also perfect of tor-amplitude in [-1, 0]. Choose a distinguished triangle
C \to \mathop{N\! L}\nolimits _{B/A} \otimes _ B B' \to \mathop{N\! L}\nolimits _{B'/A'} \to C[1]
in D(B'). By Lemmas 15.74.4 and 15.66.5 we conclude that C is perfect with tor-amplitude in [-1, 1]. By Lemma 15.85.2 the complex C has only one nonzero cohomology module, namely the module of the lemma sitting in degree -1. This module is of finite presentation (Lemma 15.64.4) and flat (Lemma 15.66.6). Hence it is finite projective by Algebra, Lemma 10.78.2.
\square
Comments (0)