Lemma 42.67.5. In Situation 42.67.1 let Y \to X \to S be locally of finite type and let Y' \to X' \to S' be the base change by S' \to S. Assume f : Y \to X is flat of relative dimension r. Then f' : Y' \to X' is flat of relative dimension r and the diagrams
\vcenter { \xymatrix{ Z_{k + r}(Y) \ar[r]_{g^*} & Z_{k + c + r}(Y') \\ Z_ k(X) \ar[r]^{g^*} \ar[u]^{(f')^*} & Z_{k + c}(X') \ar[u]_{f^*} } } \quad \text{and}\quad \vcenter { \xymatrix{ \mathop{\mathrm{CH}}\nolimits _{k + r}(Y) \ar[r]_{g^*} & \mathop{\mathrm{CH}}\nolimits _{k + c + r}(Y') \\ \mathop{\mathrm{CH}}\nolimits _ k(X) \ar[r]^{g^*} \ar[u]^{(f')^*} & \mathop{\mathrm{CH}}\nolimits _{k + c}(X') \ar[u]_{f^*} } }
of cycle and chow groups commutes.
Proof.
It suffices to show the first diagram commutes. To see this, let Z \subset X be an integral closed subscheme of \delta -dimension k and denote Z' \subset X' its base change. By construction we have g^*[Z] = [Z']_{k + c}. By Lemma 42.14.4 we have (f')^*g^*[Z] = [Z' \times _{X'} Y']_{k + c + r}. Conversely, we have f^*[Z] = [Z \times _ X Y]_{k + r} by Definition 42.14.1. By Lemma 42.67.3 we have g^*f^*[Z] = [(Z \times _ X Y)']_{k + r + c}. Since (Z \times _ X Y)' = Z' \times _{X'} Y' by associativity of fibre product we conclude.
\square
Comments (1)
Comment #9773 by gad on