Processing math: 100%

The Stacks project

Lemma 42.67.6. In Situation 42.67.1 let Y \to X \to S be locally of finite type and let Y' \to X' \to S' be the base change by S' \to S. Assume f : Y \to X is proper. Then f' : Y' \to X' is proper and the diagram

\vcenter { \xymatrix{ Z_ k(Y) \ar[r]_{g^*} \ar[d]_{f_*} & Z_{k + c}(Y') \ar[d]^{f'_*} \\ Z_ k(X) \ar[r]^{g^*} & Z_{k + c}(X') } } \quad \text{and}\quad \vcenter { \xymatrix{ \mathop{\mathrm{CH}}\nolimits _ k(Y) \ar[r]_{g^*} \ar[d]_{f_*} & \mathop{\mathrm{CH}}\nolimits _{k + c}(Y') \ar[d]^{f'_*} \\ \mathop{\mathrm{CH}}\nolimits _ k(X) \ar[r]^{g^*} & \mathop{\mathrm{CH}}\nolimits _{k + c}(X') } }

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z \subset Y be an integral closed subscheme of \delta -dimension k and denote Z' \subset X' its base change. By construction we have g^*[Z] = [Z']_{k + c}. By Lemma 42.12.4 we have (f')_*g^*[Z] = [f'_*\mathcal{O}_{Z'}]_{k + c}. By the same lemma we have f_*[Z] = [f_*\mathcal{O}_ Z]_ k. By Lemma 42.67.3 we have g^*f_*[Z] = [(X' \to X)^*f_*\mathcal{O}_ Z]_{k + r}. Thus it suffices to show that

(X' \to X)^*f_*\mathcal{O}_ Z \cong f'_*\mathcal{O}_{Z'}

as coherent modules on X'. As X' \to X is flat and as \mathcal{O}_{Z'} = (Y' \to Y)^*\mathcal{O}_ Z, this follows from flat base change, see Cohomology of Schemes, Lemma 30.5.2. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.