Lemma 42.67.9. Let (S, \delta ), (S', \delta '), (S'', \delta '') be as in Situation 42.7.1. Let g : S' \to S and g' : S'' \to S' be flat morphisms of schemes and let c, c' \in \mathbf{Z} be integers such that S, \delta , S', \delta ', g, c and S', \delta ', S'', g', c' are as in Situation 42.67.1. Let X \to S be locally of finite type and denote X' \to S' and X'' \to S'' the base changes by S' \to S and S'' \to S. Then
S, \delta , S'', \delta '', g \circ g', c + c' is as in Situation 42.67.1,
the maps g^* : Z_ k(X) \to Z_{k + c}(X') and (g')^* : Z_{k + c}(X') \to Z_{k + c + c'}(X'') of compose to give the map (g \circ g')^* : Z_ k(X) \to Z_{k + c + c'}(X''), and
the maps g^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + c}(X') and (g')^* : \mathop{\mathrm{CH}}\nolimits _{k + c}(X') \to \mathop{\mathrm{CH}}\nolimits _{k + c + c'}(X'') of Lemma 42.67.4 compose to give the map (g \circ g')^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + c + c'}(X'') of Lemma 42.67.4.
Comments (0)