Lemma 50.21.1. There is a unique rule which assigns to every quasi-compact and quasi-separated scheme $X$ a total Chern class
\[ c^{dR} : K_0(\textit{Vect}(X)) \longrightarrow \prod \nolimits _{i \geq 0} H^{2i}_{dR}(X/\mathbf{Z}) \]
with the following properties
we have $c^{dR}(\alpha + \beta ) = c^{dR}(\alpha ) c^{dR}(\beta )$ for $\alpha , \beta \in K_0(\textit{Vect}(X))$,
if $f : X \to X'$ is a morphism of quasi-compact and quasi-separated schemes, then $c^{dR}(f^*\alpha ) = f^*c^{dR}(\alpha )$,
given $\mathcal{L} \in \mathop{\mathrm{Pic}}\nolimits (X)$ we have $c^{dR}([\mathcal{L}]) = 1 + c_1^{dR}(\mathcal{L})$
Proof.
We will apply Weil Cohomology Theories, Proposition 45.12.1 to get this.
Let $\mathcal{C}$ be the category of all quasi-compact and quasi-separated schemes. This certainly satisfies conditions (1), (2), and (3) (a), (b), and (c) of Weil Cohomology Theories, Section 45.12.
As our contravariant functor $A$ from $\mathcal{C}$ to the category of graded algebras will send $X$ to $A(X) = \bigoplus _{i \geq 0} H_{dR}^{2i}(X/\mathbf{Z})$ endowed with its cup product. Functoriality is discussed in Section 50.3 and the cup product in Section 50.4. For the additive maps $c_1^ A$ we take $c_1^{dR}$ constructed in Section 50.9.
In fact, we obtain commutative algebras by Lemma 50.4.1 which shows we have axiom (1) for $A$.
To check axiom (2) for $A$ it suffices to check that $H^*_{dR}(X \coprod Y/\mathbf{Z}) = H^*_{dR}(X/\mathbf{Z}) \times H^*_{dR}(Y/\mathbf{Z})$. This is a consequence of the fact that de Rham cohomology is constructed by taking the cohomology of a sheaf of differential graded algebras (in the Zariski topology).
Axiom (3) for $A$ is just the statement that taking first Chern classes of invertible modules is compatible with pullbacks. This follows from the more general Lemma 50.9.1.
Axiom (4) for $A$ is the projective space bundle formula which we proved in Proposition 50.14.1.
Axiom (5). Let $X$ be a quasi-compact and quasi-separated scheme and let $\mathcal{E} \to \mathcal{F}$ be a surjection of finite locally free $\mathcal{O}_ X$-modules of ranks $r + 1$ and $r$. Denote $i : P' = \mathbf{P}(\mathcal{F}) \to \mathbf{P}(\mathcal{E}) = P$ the corresponding incusion morphism. This is a morphism of smooth projective schemes over $X$ which exhibits $P'$ as an effective Cartier divisor on $P$. Thus by Lemma 50.15.7 the complex of log poles for $P' \subset P$ over $\mathbf{Z}$ is defined. Hence for $a \in A(P)$ with $i^*a = 0$ we have $a \cup c_1^ A(\mathcal{O}_ P(P')) = 0$ by Lemma 50.15.6. This finishes the proof.
$\square$
Comments (0)