Lemma 13.35.1. Let \mathcal{T} be a triangulated category. Given full subcategories \mathcal{A}, \mathcal{B}, \mathcal{C} we have (\mathcal{A} \star \mathcal{B}) \star \mathcal{C} = \mathcal{A} \star (\mathcal{B} \star \mathcal{C}).
13.35 Operations on full subcategories
Let \mathcal{T} be a triangulated category. We will identify full subcategories of \mathcal{T} with subsets of \mathop{\mathrm{Ob}}\nolimits (\mathcal{T}). Given full subcategories \mathcal{A}, \mathcal{B}, \ldots we let
\mathcal{A}[a, b] for -\infty \leq a \leq b \leq \infty be the full subcategory of \mathcal{T} consisting of all objects A[-i] with i \in [a, b] \cap \mathbf{Z} with A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) (note the minus sign!),
smd(\mathcal{A}) be the full subcategory of \mathcal{T} consisting of all objects which are isomorphic to direct summands of objects of \mathcal{A},
add(\mathcal{A}) be the full subcategory of \mathcal{T} consisting of all objects which are isomorphic to finite direct sums of objects of \mathcal{A},
\mathcal{A} \star \mathcal{B} be the full subcategory of \mathcal{T} consisting of all objects X of \mathcal{T} which fit into a distinguished triangle A \to X \to B with A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) and B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B}),
\mathcal{A}^{\star n} = \mathcal{A} \star \ldots \star \mathcal{A} with n \geq 1 factors (we will see \star is associative below),
smd(add(\mathcal{A})^{\star n}) = smd(add(\mathcal{A}) \star \ldots \star add(\mathcal{A})) with n \geq 1 factors.
If E is an object of \mathcal{T}, then we think of E sometimes also as the full subcategory of \mathcal{T} whose single object is E. Then we can consider things like add(E[-1, 2]) and so on and so forth. We warn the reader that this notation is not universally accepted.
Proof. If we have distinguished triangles A \to X \to B and X \to Y \to C then by Axiom TR4 we have distinguished triangles A \to Y \to Z and B \to Z \to C. \square
Lemma 13.35.2. Let \mathcal{T} be a triangulated category. Given full subcategories \mathcal{A}, \mathcal{B} we have smd(\mathcal{A}) \star smd(\mathcal{B}) \subset smd(\mathcal{A} \star \mathcal{B}) and smd(smd(\mathcal{A}) \star smd(\mathcal{B})) = smd(\mathcal{A} \star \mathcal{B}).
Proof. Suppose we have a distinguished triangle A_1 \to X \to B_1 where A_1 \oplus A_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) and B_1 \oplus B_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B}). Then we obtain a distinguished triangle A_1 \oplus A_2 \to A_2 \oplus X \oplus B_2 \to B_1 \oplus B_2 which proves that X is in smd(\mathcal{A} \star \mathcal{B}). This proves the inclusion. The equality follows trivially from this. \square
Lemma 13.35.3. Let \mathcal{T} be a triangulated category. Given full subcategories \mathcal{A}, \mathcal{B} the full subcategories add(\mathcal{A}) \star add(\mathcal{B}) and smd(add(\mathcal{A})) are closed under direct sums.
Proof. Namely, if A \to X \to B and A' \to X' \to B' are distinguished triangles and A, A' \in add(\mathcal{A}) and B, B' \in add(\mathcal{B}) then A \oplus A' \to X \oplus X' \to B \oplus B' is a distinguished triangle with A \oplus A' \in add(\mathcal{A}) and B \oplus B' \in add(\mathcal{B}). The result for smd(add(\mathcal{A})) is trivial. \square
Lemma 13.35.4. Let \mathcal{T} be a triangulated category. Given a full subcategory \mathcal{A} for n \geq 1 the subcategory
defined above is a strictly full subcategory of \mathcal{T} closed under direct sums and direct summands and \mathcal{C}_{n + m} = smd(\mathcal{C}_ n \star \mathcal{C}_ m) for all n, m \geq 1.
Proof. Immediate from Lemmas 13.35.1, 13.35.2, and 13.35.3. \square
Remark 13.35.5. Let F : \mathcal{T} \to \mathcal{T}' be an exact functor of triangulated categories. Given a full subcategory \mathcal{A} of \mathcal{T} we denote F(\mathcal{A}) the full subcategory of \mathcal{T}' whose objects consists of all objects F(A) with A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}). We have
We omit the trivial verifications.
Remark 13.35.6. Let \mathcal{T} be a triangulated category. Given full subcategories \mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3 \subset \ldots and \mathcal{B} of \mathcal{T} we have
We omit the trivial verifications.
Lemma 13.35.7. Let \mathcal{A} be an abelian category. Let \mathcal{D} = D(\mathcal{A}). Let \mathcal{E} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) be a subset which we view as a subset of \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}) also. Let K be an object of \mathcal{D}.
Let b \geq a and assume H^ i(K) is zero for i \not\in [a, b] and H^ i(K) \in \mathcal{E} if i \in [a, b]. Then K is in smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)}).
Let b \geq a and assume H^ i(K) is zero for i \not\in [a, b] and H^ i(K) \in smd(add(\mathcal{E})) if i \in [a, b]. Then K is in smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)}).
Let b \geq a and assume K can be represented by a complex K^\bullet with K^ i = 0 for i \not\in [a, b] and K^ i \in \mathcal{E} for i \in [a, b]. Then K is in smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)}).
Let b \geq a and assume K can be represented by a complex K^\bullet with K^ i = 0 for i \not\in [a, b] and K^ i \in smd(add(\mathcal{E})) for i \in [a, b]. Then K is in smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)}).
Proof. We will use Lemma 13.35.4 without further mention. We will prove (2) which trivially implies (1). We use induction on b - a. If b - a = 0, then K is isomorphic to H^ i(K)[-a] in \mathcal{D} and the result is immediate. If b - a > 0, then we consider the distinguished triangle
and we conclude by induction on b - a. We omit the proof of (3) and (4). \square
Lemma 13.35.8. Let \mathcal{T} be a triangulated category. Let H : \mathcal{T} \to \mathcal{A} be a homological functor to an abelian category \mathcal{A}. Let a \leq b and \mathcal{E} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{T}) be a subset such that H^ i(E) = 0 for E \in \mathcal{E} and i \not\in [a, b]. Then for X \in smd(add(\mathcal{E}[-m, m])^{\star n}) we have H^ i(X) = 0 for i \not\in [-m + na, m + nb].
Proof. Omitted. Pleasant exercise in the definitions. \square
Comments (0)