Remark 13.35.5. Let $F : \mathcal{T} \to \mathcal{T}'$ be an exact functor of triangulated categories. Given a full subcategory $\mathcal{A}$ of $\mathcal{T}$ we denote $F(\mathcal{A})$ the full subcategory of $\mathcal{T}'$ whose objects consists of all objects $F(A)$ with $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. We have

We omit the trivial verifications.

## Comments (0)