Definition 57.8.1. Let $S$ be a scheme. Let $X$ and $Y$ be schemes over $S$. Let $K \in D(\mathcal{O}_{X \times _ S Y})$. The exact functor

of triangulated categories is called a *Fourier-Mukai functor* and $K$ is called a *Fourier-Mukai kernel* for this functor. Moreover,

if $\Phi _ K$ sends $D_\mathit{QCoh}(\mathcal{O}_ X)$ into $D_\mathit{QCoh}(\mathcal{O}_ Y)$ then the resulting exact functor $\Phi _ K : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ is called a Fourier-Mukai functor,

if $\Phi _ K$ sends $D_{perf}(\mathcal{O}_ X)$ into $D_{perf}(\mathcal{O}_ Y)$ then the resulting exact functor $\Phi _ K : D_{perf}(\mathcal{O}_ X) \to D_{perf}(\mathcal{O}_ Y)$ is called a Fourier-Mukai functor, and

if $X$ and $Y$ are Noetherian and $\Phi _ K$ sends $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ into $D^ b_{\textit{Coh}}(\mathcal{O}_ Y)$ then the resulting exact functor $\Phi _ K : D^ b_{\textit{Coh}}(\mathcal{O}_ X) \to D^ b_{\textit{Coh}}(\mathcal{O}_ Y)$ is called a Fourier-Mukai functor. Similarly for $D_{\textit{Coh}}$, $D^+_{\textit{Coh}}$, $D^-_{\textit{Coh}}$.

## Comments (0)