Lemma 56.7.1. Let $X$ and $Y$ be Noetherian schemes. Let $F : \textit{Coh}(\mathcal{O}_ X) \to \textit{Coh}(\mathcal{O}_ Y)$ be a functor. Then $F$ extends uniquely to a functor $\mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Y)$ which commutes with filtered colimits. If $F$ is additive, then its extension commutes with arbitrary direct sums. If $F$ is exact, left exact, or right exact, so is its extension.

**Proof.**
The existence and uniqueness of the extension is a general fact, see Categories, Lemma 4.26.2. To see that the lemma applies observe that coherent modules are of finite presentation (Modules, Lemma 17.12.2) and hence categorically compact objects of $\textit{Mod}(\mathcal{O}_ X)$ by Modules, Lemma 17.22.8. Finally, every quasi-coherent module is a filtered colimit of coherent ones for example by Properties, Lemma 28.22.3.

Assume $F$ is additive. If $\mathcal{F} = \bigoplus _{j \in J} \mathcal{H}_ j$ with $\mathcal{H}_ j$ quasi-coherent, then $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{J' \subset J\text{ finite}} \bigoplus _{j \in J'} \mathcal{H}_ j$. Denoting the extension of $F$ also by $F$ we obtain

Thus $F$ commutes with arbitrary direct sums.

Suppose $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ is a short exact sequence of quasi-coherent $\mathcal{O}_ X$-modules. Then we write $\mathcal{F}' = \bigcup \mathcal{F}'_ i$ as the union of its coherent submodules, see Properties, Lemma 28.22.3. Denote $\mathcal{F}''_ i \subset \mathcal{F}''$ the image of $\mathcal{F}'_ i$ and denote $\mathcal{F}_ i = \mathcal{F} \cap \mathcal{F}'_ i = \mathop{\mathrm{Ker}}(\mathcal{F}'_ i \to \mathcal{F}''_ i)$. Then it is clear that $\mathcal{F} = \bigcup \mathcal{F}_ i$ and $\mathcal{F}'' = \bigcup \mathcal{F}''_ i$ and that we have short exact sequences

Since the extension commutes with filtered colimits we have $F(\mathcal{F}) = \mathop{\mathrm{colim}}\nolimits _{i \in I} F(\mathcal{F}_ i)$, $F(\mathcal{F}') = \mathop{\mathrm{colim}}\nolimits _{i \in I} F(\mathcal{F}'_ i)$, and $F(\mathcal{F}'') = \mathop{\mathrm{colim}}\nolimits _{i \in I} F(\mathcal{F}''_ i)$. Since filtered colimits are exact (Modules, Lemma 17.3.2) we conclude that exactness properties of $F$ are inherited by its extension. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)