The Stacks project

Lemma 56.14.2. Let $k$ be a field. Let $X$ be a scheme of finite type over $k$ which is regular. Let $x \in X$ be a closed point. For a coherent $\mathcal{O}_ X$-module $\mathcal{F}$ supported at $x$ choose a coherent $\mathcal{O}_ X$-module $\mathcal{F}'$ supported at $x$ such that $\mathcal{F}_ x$ and $\mathcal{F}'_ x$ are Matlis dual. Then there is an isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}, M) = H^0(X, M \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F}'[-d_ x]) \]

where $d_ x = \dim (\mathcal{O}_{X, x})$ functorial in $M$ in $D_{perf}(\mathcal{O}_ X)$.

Proof. Since $\mathcal{F}$ is supported at $x$ we have

\[ \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}, M) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{F}_ x, M_ x) \]

and similarly we have

\[ H^0(X, M \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F}'[-d_ x]) = \text{Tor}^{\mathcal{O}_{X, x}}_{d_ x}(M_ x, \mathcal{F}'_ x) \]

Thus it suffices to show that given a Noetherian regular local ring $A$ of dimension $d$ and a finite length $A$-module $N$, if $N'$ is the Matlis dual to $N$, then there exists a functorial isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _ A(N, K) = \text{Tor}^ A_ d(K, N') \]

for $K$ in $D_{perf}(A)$. We can write the left hand side as $H^0(R\mathop{\mathrm{Hom}}\nolimits _ A(N, A) \otimes _ A^\mathbf {L} K)$ by More on Algebra, Lemma 15.73.14 and the fact that $N$ determines a perfect object of $D(A)$. Hence the formula holds because

\[ R\mathop{\mathrm{Hom}}\nolimits _ A(N, A) = R\mathop{\mathrm{Hom}}\nolimits _ A(N, A[d])[-d] = N'[-d] \]

by Dualizing Complexes, Lemma 47.16.4 and the fact that $A[d]$ is a normalized dualizing complex over $A$ ($A$ is Gorenstein by Dualizing Complexes, Lemma 47.21.3). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G02. Beware of the difference between the letter 'O' and the digit '0'.