Lemma 15.89.8. Let $R$ be a ring. Let $I \subset R$ be an ideal. Let $K$ be an object of $D(R)$ such that $K \otimes _ R^\mathbf {L} R/I = 0$ in $D(R)$. Then
$K \otimes _ R^\mathbf {L} R/I^ n = 0$ for all $n \geq 1$,
$K \otimes _ R^\mathbf {L} N = 0$ for any $I$-power torsion $R$-module $N$,
$K \otimes _ R^\mathbf {L} M = 0$ for any $M \in D^ b(R)$ whose cohomology modules are $I$-power torsion.
Comments (3)
Comment #8384 by Peng Du on
Comment #8637 by Yebo Peng on
Comment #8996 by Stacks project on