The Stacks project

Lemma 15.89.7. Let $R$ be a ring. Let $I \subset R$ be an ideal. Let $K$ be an object of $D(R)$ such that $H^ i(K \otimes _ R^\mathbf {L} R/I) = 0$ for $i > 0$. Then

  1. $H^ i(K \otimes _ R^\mathbf {L} R/I^ n) = 0$ for all $n \geq 1$ and $i > 0$,

  2. $H^ i(K \otimes _ R^\mathbf {L} N) = 0$ for any $I$-power torsion $R$-module $N$ and $i > 0$, and

  3. for any $M \in D^ b(R)$ whose cohomology modules $H^ i(M)$ are $I$-power torsion and $0$ for $i > 0$ we have $H^ i(K \otimes _ R^\mathbf {L} M) = 0$ for $i > 0$.

Proof. Proof of (2). We can write $N = \bigcup N[I^ n]$. We have $K \otimes _ R^\mathbf {L} N = \text{hocolim}_ n K \otimes _ R^\mathbf {L} N[I^ n]$ as tensor products commute with colimits (details omitted; hint: represent $K$ by a K-flat complex and compute directly). Hence we may assume $N$ is annihilated by $I^ n$. Consider the $R$-algebra $R' = R/I^ n \oplus N$ where $N$ is an ideal of square zero. It suffices to show that the object $K' = K \otimes _ R^\mathbf {L} R'$ of $D(R')$ has vanishing cohomology in positive degrees. We have a surjection $R' \to R/I$ of $R$-algebras whose kernel $J$ is nilpotent (any product of $n$ elements in the kernel is zero). We have

\[ K \otimes _ R^\mathbf {L} R/I = (K \otimes _ R^\mathbf {L} R') \otimes _{R'}^\mathbf {L} R/I = K' \otimes _{R'}^\mathbf {L} R/I \]

By assumption the complex $K \otimes _ R^\mathbf {L} R/I$ has tor-amplitude in $[-\infty , 0]$. Thus the conclusion by Lemma 15.67.20.

Part (1) follows trivially from part (2). Part (3) follows from part (2), induction on the number of nonzero cohomology modules of $M$, and the distinguished triangles of truncation from Derived Categories, Remark 13.12.4. Details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H82. Beware of the difference between the letter 'O' and the digit '0'.