Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 21.52.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site with set of coverings $\text{Cov}_\mathcal {C}$. Let $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, and $\text{Cov} \subset \text{Cov}_\mathcal {C}$ be subsets. Assume that

  1. For every $\mathcal{U} \in \text{Cov}$ we have $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ with $I$ finite, $U, U_ i \in \mathcal{B}$ and every $U_{i_0} \times _ U \ldots \times _ U U_{i_ p} \in \mathcal{B}$.

  2. For every $U \in \mathcal{B}$ the coverings of $U$ occurring in $\text{Cov}$ is a cofinal system of coverings of $U$.

Then for $U \in \mathcal{B}$ the object $j_{U!}\mathcal{O}_ U$ is a compact object of $D^+(\mathcal{O})$ in the following sense: if $M = \bigoplus _{i \in I} M_ i$ in $D(\mathcal{O})$ is bounded below, then $\mathop{\mathrm{Hom}}\nolimits (j_{U!}\mathcal{O}_ U, M) = \bigoplus _{i \in I} \mathop{\mathrm{Hom}}\nolimits (j_{U!}\mathcal{O}_ U, M_ i)$.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.