Lemma 63.10.1. Let f : X \to Y be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a ring.
Let K_ i \in D^+_{tors}(X_{\acute{e}tale}, \Lambda ), i \in I be a family of objects. Assume given a \in \mathbf{Z} such that H^ n(K_ i) = 0 for n < a and i \in I. Then Rf_!(\bigoplus _ i K_ i) = \bigoplus _ i Rf_!K_ i.
If \Lambda is torsion, then the functor Rf_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda ) commutes with direct sums.
Comments (0)