Lemma 17.30.5. Let f : X \to Y be a morphism of ringed spaces. The differentials \text{d} : \Omega ^ i_{X/Y} \to \Omega ^{i + 1}_{X/Y} are differential operators of order 1 on X/Y.
Proof. Immediate from Lemma 17.30.3 and the definition. \square
Lemma 17.30.5. Let f : X \to Y be a morphism of ringed spaces. The differentials \text{d} : \Omega ^ i_{X/Y} \to \Omega ^{i + 1}_{X/Y} are differential operators of order 1 on X/Y.
Proof. Immediate from Lemma 17.30.3 and the definition. \square
Comments (0)