Lemma 29.17.4. Let $S$ be a locally Noetherian scheme. Then $S$ is universally catenary if and only if the irreducible components of $S$ are universally catenary.
Proof. Omitted. For the affine case, please see Algebra, Lemma 10.105.8. $\square$
Lemma 29.17.4. Let $S$ be a locally Noetherian scheme. Then $S$ is universally catenary if and only if the irreducible components of $S$ are universally catenary.
Proof. Omitted. For the affine case, please see Algebra, Lemma 10.105.8. $\square$
Comments (0)