The Stacks project

Lemma 15.29.4. Let $R$ be a ring. Let $f_1, \ldots , f_ r \in R$. Let $M$ be an $R$-module. If there exists an $i \in \{ 1, \ldots , r\} $ such that $f_ i$ is a unit, then the extended alternating Čech complex of $M$ is homotopy equivalent to $0$.

Proof. We will use the following notation: a cochain $x$ of degree $p + 1$ in the extended alternating Čech complex of $M$ is $x = (x_{i_0 \ldots i_ p})$ where $x_{i_0 \ldots i_ p}$ is in $M_{f_{i_0} \ldots f_{i_ p}}$. With this notation we have

\[ d(x)_{i_0 \ldots i_{p + 1}} = \sum \nolimits _ j (-1)^ j x_{i_0 \ldots \hat i_ j \ldots i_{p + 1}} \]

As homotopy we use the maps

\[ h : \text{cochains of degree }p + 2 \to \text{cochains of degree }p + 1 \]

given by the rule

\[ h(x)_{i_0 \ldots i_ p} = 0 \text{ if } i \in \{ i_0, \ldots , i_ p\} \text{ and } h(x)_{i_0 \ldots i_ p} = (-1)^ j x_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p} \text{ if not} \]

Here $j$ is the unique index such that $i_ j < i < i_{j + 1}$ in the second case; also, since $f_ i$ is a unit we have the equality

\[ M_{f_{i_0} \ldots f_{i_ p}} = M_{f_{i_0} \ldots f_{i_ j} f_ i f_{i_{j + 1}} \ldots f_{i_ p}} \]

which we can use to make sense of thinking of $(-1)^ j x_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p}$ as an element of $M_{f_{i_0} \ldots f_{i_ p}}$. We will show by a computation that $d h + h d$ equals the negative of the identity map which finishes the proof. To do this fix $x$ a cochain of degree $p + 1$ and let $1 \leq i_0 < \ldots < i_ p \leq r$.

Case I: $i \in \{ i_0, \ldots , i_ p\} $. Say $i = i_ t$. Then we have $h(d(x))_{i_0 \ldots i_ p} = 0$. On the other hand we have

\[ d(h(x))_{i_0 \ldots i_ p} = \sum (-1)^ j h(x)_{i_0 \ldots \hat i_ j \ldots i_ p} = (-1)^ t h(x)_{i_0 \ldots \hat i \ldots i_ p} = (-1)^ t (-1)^{t - 1} x_{i_0 \ldots i_ p} \]

Thus $(dh + hd)(x)_{i_0 \ldots i_ p} = -x_{i_0 \ldots i_ p}$ as desired.

Case II: $i \not\in \{ i_0, \ldots , i_ p\} $. Let $j$ be such that $i_ j < i < i_{j + 1}$. Then we see that

\begin{align*} h(d(x))_{i_0 \ldots i_ p} & = (-1)^ j d(x)_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p} \\ & = \sum \nolimits _{j' \leq j} (-1)^{j + j'} x_{i_0 \ldots \hat i_{j'} \ldots i_ j i i_{j + 1} \ldots i_ p} - x_{i_0 \ldots i_ p} \\ & + \sum \nolimits _{j' > j} (-1)^{j + j' + 1} x_{i_0 \ldots i_ j i i_{j + 1} \ldots \hat i_{j'} \ldots i_ p} \end{align*}

On the other hand we have

\begin{align*} d(h(x))_{i_0 \ldots i_ p} & = \sum \nolimits _{j'} (-1)^{j'} h(x)_{i_0 \ldots \hat i_{j'} \ldots i_ p} \\ & = \sum \nolimits _{j' \leq j} (-1)^{j' + j - 1} x_{i_0 \ldots \hat i_{j'} \ldots i_ j i i_{j + 1} \ldots i_ p} \\ & + \sum \nolimits _{j' > j} (-1)^{j' + j} x_{i_0 \ldots i_ j i i_{j + 1} \ldots \hat i_{j'} \ldots i_ p} \end{align*}

Adding these up we obtain $(dh + hd)(x)_{i_0 \ldots i_ p} = - x_{i_0 \ldots i_ p}$ as desired. $\square$


Comments (2)

Comment #6238 by Owen on

same thing as comment #6205: rather than

There are also:

  • 2 comment(s) on Section 15.29: The extended alternating Čech complex

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G6J. Beware of the difference between the letter 'O' and the digit '0'.