Processing math: 100%

The Stacks project

Lemma 15.29.4. Let R be a ring. Let f_1, \ldots , f_ r \in R. Let M be an R-module. If there exists an i \in \{ 1, \ldots , r\} such that f_ i is a unit, then the extended alternating Čech complex of M is homotopy equivalent to 0.

Proof. We will use the following notation: a cochain x of degree p + 1 in the extended alternating Čech complex of M is x = (x_{i_0 \ldots i_ p}) where x_{i_0 \ldots i_ p} is in M_{f_{i_0} \ldots f_{i_ p}}. With this notation we have

d(x)_{i_0 \ldots i_{p + 1}} = \sum \nolimits _ j (-1)^ j x_{i_0 \ldots \hat i_ j \ldots i_{p + 1}}

As homotopy we use the maps

h : \text{cochains of degree }p + 2 \to \text{cochains of degree }p + 1

given by the rule

h(x)_{i_0 \ldots i_ p} = 0 \text{ if } i \in \{ i_0, \ldots , i_ p\} \text{ and } h(x)_{i_0 \ldots i_ p} = (-1)^ j x_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p} \text{ if not}

Here j is the unique index such that i_ j < i < i_{j + 1} in the second case; also, since f_ i is a unit we have the equality

M_{f_{i_0} \ldots f_{i_ p}} = M_{f_{i_0} \ldots f_{i_ j} f_ i f_{i_{j + 1}} \ldots f_{i_ p}}

which we can use to make sense of thinking of (-1)^ j x_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p} as an element of M_{f_{i_0} \ldots f_{i_ p}}. We will show by a computation that d h + h d equals the negative of the identity map which finishes the proof. To do this fix x a cochain of degree p + 1 and let 1 \leq i_0 < \ldots < i_ p \leq r.

Case I: i \in \{ i_0, \ldots , i_ p\} . Say i = i_ t. Then we have h(d(x))_{i_0 \ldots i_ p} = 0. On the other hand we have

d(h(x))_{i_0 \ldots i_ p} = \sum (-1)^ j h(x)_{i_0 \ldots \hat i_ j \ldots i_ p} = (-1)^ t h(x)_{i_0 \ldots \hat i \ldots i_ p} = (-1)^ t (-1)^{t - 1} x_{i_0 \ldots i_ p}

Thus (dh + hd)(x)_{i_0 \ldots i_ p} = -x_{i_0 \ldots i_ p} as desired.

Case II: i \not\in \{ i_0, \ldots , i_ p\} . Let j be such that i_ j < i < i_{j + 1}. Then we see that

\begin{align*} h(d(x))_{i_0 \ldots i_ p} & = (-1)^ j d(x)_{i_0 \ldots i_ j i i_{j + 1} \ldots i_ p} \\ & = \sum \nolimits _{j' \leq j} (-1)^{j + j'} x_{i_0 \ldots \hat i_{j'} \ldots i_ j i i_{j + 1} \ldots i_ p} - x_{i_0 \ldots i_ p} \\ & + \sum \nolimits _{j' > j} (-1)^{j + j' + 1} x_{i_0 \ldots i_ j i i_{j + 1} \ldots \hat i_{j'} \ldots i_ p} \end{align*}

On the other hand we have

\begin{align*} d(h(x))_{i_0 \ldots i_ p} & = \sum \nolimits _{j'} (-1)^{j'} h(x)_{i_0 \ldots \hat i_{j'} \ldots i_ p} \\ & = \sum \nolimits _{j' \leq j} (-1)^{j' + j - 1} x_{i_0 \ldots \hat i_{j'} \ldots i_ j i i_{j + 1} \ldots i_ p} \\ & + \sum \nolimits _{j' > j} (-1)^{j' + j} x_{i_0 \ldots i_ j i i_{j + 1} \ldots \hat i_{j'} \ldots i_ p} \end{align*}

Adding these up we obtain (dh + hd)(x)_{i_0 \ldots i_ p} = - x_{i_0 \ldots i_ p} as desired. \square


Comments (2)

Comment #6238 by Owen on

same thing as comment #6205: rather than

There are also:

  • 2 comment(s) on Section 15.29: The extended alternating Čech complex

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.