Lemma 36.6.8. Let $X$ be a scheme. Let $T \subset X$ be a closed subset which can locally be cut out by at most $c$ elements of the structure sheaf. Then $\mathcal{H}^ i_ Z(\mathcal{F}) = 0$ for $i > c$ and any quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$.
Proof. This follows immediately from the local description of $R\mathcal{H}_ T(\mathcal{F})$ given in Lemma 36.6.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: