Remark 36.6.10. With X, f_1, \ldots , f_ c \in \Gamma (X, \mathcal{O}_ X), and \mathcal{F} as in Remark 36.6.4. There is a canonical \mathcal{O}_ X|_ Z-linear map
functorial in \mathcal{F}. Namely, denoting \mathcal{F}^\bullet the extended alternating Čech complex (36.6.4.1) we have the canonical map \mathcal{F}^\bullet \to i_*R\mathcal{H}_ Z(\mathcal{F}) of Remark 36.6.6. This determines a canonical map
on cohomology sheaves in degree c. Given a local section s of \mathcal{F} we can consider the local section
of \mathcal{F}_{1 \ldots c}. The class of this section in the cokernel displayed above depends only on s modulo the image of (f_1, \ldots , f_ c) : \mathcal{F}^{\oplus c} \to \mathcal{F}. Since i_*i^*\mathcal{F} is equal to the cokernel of (f_1, \ldots , f_ c) : \mathcal{F}^{\oplus c} \to \mathcal{F} we see that we get an \mathcal{O}_ X-module map i_*i^*\mathcal{F} \to i_*\mathcal{H}_ Z^ c(\mathcal{F}). As i_* is fully faithful we get the map c_{f_1, \ldots , f_ c}.
Comments (0)
There are also: