The Stacks project

Lemma 15.65.2. Let $R$ be a ring. Let $K \in D^-(R)$. Let $m \in \mathbf{Z}$. Then $K$ is $m$-pseudo-coherent if and only if for any filtered colimit $M = \mathop{\mathrm{colim}}\nolimits M_ i$ of $R$-modules we have $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M_ i) = \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M)$ for $n < -m$ and $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M_ i) \to \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M)$ is injective.

Proof. One implication was shown in Lemma 15.65.1. Assume for any filtered colimit $M = \mathop{\mathrm{colim}}\nolimits M_ i$ of $R$-modules we have $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M_ i) = \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M)$ for $n < -m$ and $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M_ i) \to \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M)$ is injective. We will show $K$ is $m$-pseudo-coherent.

Let $t$ be the maximal integer such that $H^ t(K)$ is nonzero. We will use induction on $t$. If $t < m$, then $K$ is $m$-pseudo-coherent by Lemma 15.64.7. If $t \geq m$, then since $\mathop{\mathrm{Hom}}\nolimits _ R(H^ t(K), M) = \mathop{\mathrm{Ext}}\nolimits ^{-t}_ R(K, M)$ we conclude that $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ R(H^ t(K), M_ i) \to \mathop{\mathrm{Hom}}\nolimits _ R(H^ t(K), M)$ is injective for any filtered colimit $M = \mathop{\mathrm{colim}}\nolimits M_ i$. This implies that $H^ t(K)$ is a finite $R$-module by Algebra, Lemma 10.11.1. Choose a finite free $R$-module $F$ and a surjection $F \to H^ t(K)$. We can lift this to a morphism $F[-t] \to K$ in $D(R)$ and choose a distinguished triangle

\[ F[-t] \to K \to L \to F[-t + 1] \]

in $D(R)$. Then $H^ i(L) = 0$ for $i \geq t$. Moreover, the long exact sequence of $\mathop{\mathrm{Ext}}\nolimits $ associated to this distinguished triangle shows that $L$ inherits the assumption we made on $K$ by a small argument we omit. By induction on $t$ we conclude that $L$ is $m$-pseudo-coherent. Hence $K$ is $m$-pseudo-coherent by Lemma 15.64.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G8X. Beware of the difference between the letter 'O' and the digit '0'.