Lemma 15.65.1. Let $R$ be a ring. Let $M = \mathop{\mathrm{colim}}\nolimits M_ i$ be a filtered colimit of $R$-modules. Let $K \in D(R)$ be $m$-pseudo-coherent. Then $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M_ i) = \mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, M)$ for $n < -m$ and $\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M_ i) \to \mathop{\mathrm{Ext}}\nolimits ^{-m}_ R(K, M)$ is injective.
Proof. By definition we can find a distinguished triangle
in $D(R)$ such that $E$ is represented by a bounded complex of finite free $R$-modules and such that $H^ i(L) = 0$ for $i \geq m$. Then $\mathop{\mathrm{Ext}}\nolimits ^ n_ R(L, N) = 0$ for any $R$-module $N$ and $n \leq -m$, see Derived Categories, Lemma 13.27.3. By the long exact sequence of $\mathop{\mathrm{Ext}}\nolimits $ associated to the distinguished triangle we see that $\mathop{\mathrm{Ext}}\nolimits ^ n_ R(K, N) \to \mathop{\mathrm{Ext}}\nolimits ^ n_ R(E, N)$ is an isomorphism for $n < -m$ and injective for $n = -m$. Thus it suffices to prove that $M \mapsto \mathop{\mathrm{Ext}}\nolimits _ R^ n(E, M)$ commutes with filtered colimits when $E$ can be represented by a bounded complex of finite free $R$-modules $E^\bullet $. The modules $\mathop{\mathrm{Ext}}\nolimits ^ n_ R(E, M)$ are computed by the complex $\mathop{\mathrm{Hom}}\nolimits _ R(E^\bullet , M)$, see Derived Categories, Lemma 13.19.8. The functor $M \mapsto \mathop{\mathrm{Hom}}\nolimits _ R(E^ p, M)$ commutes with filtered colimits as $E^ p$ is finite free. Thus $\mathop{\mathrm{Hom}}\nolimits _ R(E^\bullet , M) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ R(E^\bullet , M_ i)$ as complexes. Since filtered colimits are exact (Algebra, Lemma 10.8.8) we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)