Lemma 87.12.4. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of formal algebraic spaces over $S$ which is representable by algebraic spaces. Then $f$ is surjective in the sense of Bootstrap, Definition 80.4.1 if and only if $f_{red} : X_{red} \to Y_{red}$ is a surjective morphism of algebraic spaces.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)