Remark 85.17.9 (Variant for Noetherian). Let $P$ be a local property of morphisms of $\textit{WAdm}^{Noeth}$, see Remark 85.17.5. We say $P$ is *stable under base change* if given $B \to A$ and $B \to C$ in $\textit{WAdm}^{Noeth}$ the property $P(B \to A)$ implies both that $A \widehat{\otimes }_ B C$ is adic Noetherian^{1} and that $P(C \to A \widehat{\otimes }_ B C)$. In exactly the same way we obtain a variant of Lemma 85.17.7 for morphisms between locally Noetherian formal algebraic spaces over $S$.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)