The Stacks project

Lemma 88.27.1. In the situation above, let $X_1 \to X$ be a morphism of algebraic spaces with $X_1$ locally Noetherian. Denote $T_1 \subset |X_1|$ the inverse image of $T$ and $U_1 \subset X_1$ the inverse image of $U$. We denote

  1. $\mathcal{C}_{X, T}$ the category whose objects are morphisms of algebraic spaces $f : X' \to X$ which are locally of finite type and such that $U' = f^{-1}U \to U$ is an isomorphism,

  2. $\mathcal{C}_{X_1, T_1}$ the category whose objects are morphisms of algebraic spaces $f_1 : X_1' \to X_1$ which are locally of finite type and such that $f_1^{-1}U_1 \to U_1$ is an isomorphism,

  3. $\mathcal{C}_{X_{/T}}$ the category whose objects are morphisms $g : W \to X_{/T}$ of formal algebraic spaces with $W$ locally Noetherian and $g$ rig-étale,

  4. $\mathcal{C}_{X_{1, /T_1}}$ the category whose objects are morphisms $g_1 : W_1 \to X_{1, /T_1}$ of formal algebraic spaces with $W_1$ locally Noetherian and $g_1$ rig-étale.

Then the diagram

\[ \xymatrix{ \mathcal{C}_{X, T} \ar[d] \ar[r] & \mathcal{C}_{X_{/T}} \ar[d] \\ \mathcal{C}_{X_1, T_1} \ar[r] & \mathcal{C}_{X_{1, /T_1}} } \]

is commutative where the horizontal arrows are given by (88.27.0.1) and the vertical arrows by base change along $X_1 \to X$ and along $X_{1, /T_1} \to X_{/T}$.

Proof. This follows immediately from the fact that the completion functor $(h : Y \to X) \mapsto Y_{/T} = Y_{/|h|^{-1}T}$ on the category of algebraic spaces over $X$ commutes with fibre products. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GDQ. Beware of the difference between the letter 'O' and the digit '0'.