Lemma 88.29.2. Let $S$ be a scheme. Let $\mathfrak X' \to \mathfrak X$ be a formal modification (Definition 88.24.1) of locally Noetherian formal algebraic spaces over $S$. Given
any adic Noetherian topological ring $A$,
any adic morphism $\text{Spf}(A) \longrightarrow \mathfrak X$
there exists a proper morphism $X \to \mathop{\mathrm{Spec}}(A)$ of algebraic spaces and an isomorphism
over $\text{Spf}(A)$ of the base change of $\mathfrak X$ with the formal completion of $X$ along the “closed fibre” $Z = X \times _{\mathop{\mathrm{Spec}}(A)} \text{Spf}(A)_{red}$ of $X$ over $A$.
Comments (0)