Lemma 70.3.6. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $E, F, G, H : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$, $b : H \to G$, and $c : G \to E$ be transformations of functors. If $c$, $c \circ a$, and $c \circ b$ are limit preserving, then $F \times _ G H \to E$ is too.
Proof. Let $T = \mathop{\mathrm{lim}}\nolimits _{i \in I} T_ i$ as in characterization (2) of Lemma 70.3.2. Then we have
as filtered colimits commute with finite products. Our goal is thus to show that
is a fibre product diagram. This follows from the observation that given maps of sets $E' \to E$, $F \to G$, $H \to G$, and $G \to E$ we have
Some details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)