Lemma 59.104.4. Let $f : X \to Y$ be a morphism of schemes. Let $Z \to Y$ be a surjective integral morphism of schemes or a surjective proper morphism of schemes. If the functors
\[ \mathop{\mathit{Sh}}\nolimits (Z_{\acute{e}tale}) \longrightarrow \text{descent data for étale sheaves wrt }\{ X \times _ Y Z \to Z\} \]
and
\[ \mathop{\mathit{Sh}}\nolimits ((Z \times _ Y Z)_{\acute{e}tale}) \longrightarrow \text{descent data for étale sheaves wrt } \{ X \times _ Y (Z \times _ Y Z) \to Z \times _ Y Z\} \]
are equivalences of categories, then
\[ \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) \longrightarrow \text{descent data for étale sheaves wrt }\{ X \to Y\} \]
is an equivalence.
Comments (0)