Remark 84.3.5. In the situation of Lemma 84.3.3 we have

$DQ_ Y(Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) = Rf_* DQ_ X(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)))$

by Derived Categories of Spaces, Lemma 73.19.2. Thus if $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)) \in D_\mathit{QCoh}(\mathcal{O}_ X)$, then we can “erase” the $DQ_ Y$ on the left hand side of the arrow. On the other hand, if we know that $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K) \in D_\mathit{QCoh}(\mathcal{O}_ Y)$, then we can “erase” the $DQ_ Y$ from the right hand side of the arrow. If both are true then we see that (84.3.2.1) is an isomorphism. Combining this with Derived Categories of Spaces, Lemma 73.13.10 we see that $Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K)$ is an isomorphism if

1. $L$ and $Rf_*L$ are perfect, or

2. $K$ is bounded below and $L$ and $Rf_*L$ are pseudo-coherent.

For (2) we use that $a(K)$ is bounded below if $K$ is bounded below, see Lemma 84.3.2.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).