Processing math: 100%

The Stacks project

Lemma 88.14.11. Let \varphi : A \to B be an arrow of \textit{WAdm}^{Noeth}. Assume \varphi is adic, topologically of finite type, flat, and A/I \to B/IB is étale for some (resp. any) ideal of definition I \subset A. Let \mathfrak q \subset B be rig-closed such that \mathfrak p = A \cap \mathfrak q is rig-closed as well. Then \mathfrak p B_\mathfrak q = \mathfrak q B_\mathfrak q.

Proof. Let \kappa be the residue field of the 1-dimensional complete local ring A/\mathfrak p. Since A/I \to B/IB is étale, we see that B \otimes _ A \kappa is a finite product of finite separable extensions of \kappa , see Algebra, Lemma 10.143.4. One of these is the residue field of B/\mathfrak q. By Algebra, Lemma 10.96.12 we see that B/\mathfrak p B is a finite A/\mathfrak p-algebra. It is also flat. Combining the above we see that A/\mathfrak p \to B /\mathfrak p B is finite étale, see Algebra, Lemma 10.143.7. Hence B/\mathfrak p B is reduced, which implies the statement of the lemma (details omitted). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.