Definition 88.16.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of locally Noetherian formal algebraic spaces over $S$. We say $f$ is rig-flat if for every commutative diagram
\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]
with $U$ and $V$ affine formal algebraic spaces, $U \to X$ and $V \to Y$ representable by algebraic spaces and étale, the morphism $U \to V$ corresponds to a rig-flat map of adic Noetherian topological rings.
Comments (0)