Lemma 59.52.5. Let $I$, $g_ i : X_ i \to S_ i$, $g : X \to S$, $f_{ii'}$, $f_ i$, $g_ i$, $h_ i$ be as in Lemma 59.51.8. Let $\mathcal{F}_ i^\bullet$ be a complex of abelian sheaves on $X_{i, {\acute{e}tale}}$. Let $\varphi _{i'i} : f_{i'i}^{-1}\mathcal{F}_ i^\bullet \to \mathcal{F}_{i'}^\bullet$ be a map of complexes on $X_{i, {\acute{e}tale}}$ such that $\varphi _{i''i} = \varphi _{i''i'} \circ f_{i'' i'}^{-1}\varphi _{i'i}$ whenever $i'' \geq i' \geq i$. Assume there is an integer $a$ such that $\mathcal{F}_ i^ n = 0$ for $n < a$ and all $i \in I$. Then

$R^ pg_*(\mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i^\bullet ) = \mathop{\mathrm{colim}}\nolimits _{i \geq 0} h_ i^{-1}R^ pg_{i, *}\mathcal{F}_ i^\bullet$

for all $p \in \mathbf{Z}$.

Proof. This is a consequence of Lemma 59.51.8. Set $\mathcal{F}^\bullet = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i^\bullet$. The lemma tells us that

$\mathop{\mathrm{colim}}\nolimits _{i \in I} h_ i^{-1}R^ pg_{i, *}\mathcal{F}_ i^ n = R^ pg_*\mathcal{F}^ n$

for all $n, p \in \mathbf{Z}$. Let us use the spectral sequences

$E_{1, i}^{s, t} = R^ tg_{i, *}\mathcal{F}_ i^ s \Rightarrow R^{s + t}g_{i, *}\mathcal{F}_ i^\bullet$

and

$E_1^{s, t} = R^ tg_*\mathcal{F}^ s \Rightarrow R^{s + t}g_*\mathcal{F}^\bullet$

of Derived Categories, Lemma 13.21.3. Since $\mathcal{F}_ i^ n = 0$ for $n < a$ (with $a$ independent of $i$) we see that only a fixed finite number of terms $E_{1, i}^{s, t}$ (independent of $i$) and $E_1^{s, t}$ contribute and $E_1^{s, t} = \mathop{\mathrm{colim}}\nolimits E_{i, i}^{s, t}$. This implies what we want. Some details omitted. (There is an alternative argument using “stupid” truncations of complexes which avoids using spectral sequences.) $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GIV. Beware of the difference between the letter 'O' and the digit '0'.