The Stacks project

Remark 59.75.3 (Lifting specializations). Let $S$ be a scheme and let $t \leadsto s$ be a specialization of point on $S$. Choose geometric points $\overline{t}$ and $\overline{s}$ lying over $t$ and $s$. Since $t$ corresponds to a point of $\mathop{\mathrm{Spec}}(\mathcal{O}_{S, s})$ by Schemes, Lemma 26.13.2 and since $\mathcal{O}_{S, s} \to \mathcal{O}^{sh}_{S, \overline{s}}$ is faithfully flat, we can find a point $t' \in \mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}})$ mapping to $t$. As $\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}})$ is a limit of schemes étale over $S$ we see that $\kappa (t')/\kappa (t)$ is a separable algebraic extension (usually not finite of course). Since $\kappa (\overline{t})$ is algebraically closed, we can choose an embedding $\kappa (t') \to \kappa (\overline{t})$ as extensions of $\kappa (t)$. This choice gives us a commutative diagram

\[ \xymatrix{ \overline{t} \ar[d] \ar[r] & \mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}}) \ar[d] & \overline{s} \ar[l] \ar[d] \\ t \ar[r] & S & s \ar[l] } \]

of points and geometric points. Thus if $t \leadsto s$ we can always “lift” $\overline{t}$ to a geometric point of the strict henselization of $S$ at $\overline{s}$ and get specialization maps as above.


Comments (0)

There are also:

  • 1 comment(s) on Section 59.75: Specializations and étale sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GJ5. Beware of the difference between the letter 'O' and the digit '0'.