Processing math: 100%

The Stacks project

Lemma 63.12.2. Let f : X \to Y be a finite type separated morphism of schemes with Y quasi-compact and quasi-separated. Let K be an object of D^+_{tors}(X_{\acute{e}tale}, \Lambda ) or of D(X_{\acute{e}tale}, \Lambda ) in case \Lambda is torsion. Then there is a canonical isomorphism

(Rf_!K)_{\overline{y}} \longrightarrow R\Gamma _ c(X_{\overline{y}}, K|_{X_{\overline{y}}})

in D(\Lambda ) for any geometric point \overline{y} : \mathop{\mathrm{Spec}}(k) \to Y.

Proof. Immediate consequence of Lemma 63.9.4 and the definitions. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.