Lemma 59.94.4. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be an abelian sheaf on $X_{\acute{e}tale}$. Assume

$f$ is smooth and proper

$\mathcal{F}$ is locally constant, and

$\mathcal{F}_{\overline{x}}$ is a torsion group all of whose elements have order prime to the residue characteristic of $\overline{x}$ for every geometric point $\overline{x}$ of $X$.

Then for every geometric point $\overline{s}$ of $S$ and every geometric point $\overline{t}$ of $\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}})$ the specialization map $sp : (Rf_*\mathcal{F})_{\overline{s}} \to (Rf_*\mathcal{F})_{\overline{t}}$ is an isomorphism.

## Comments (0)