Lemma 63.10.5. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let $U$ be a quasi-compact open of $X$ with complement $Z \subset X$. Denote $g : U \to Y$ and $h : Z \to Y$ the restrictions of $f$. Let $\Lambda $ be a ring. For $K$ in $D^+_{tors}(X_{\acute{e}tale}, \Lambda )$ or $K \in D(X_{\acute{e}tale}, \Lambda )$ if $\Lambda $ is torsion, we have a distinguished triangle

in $D(Y_{\acute{e}tale}, \Lambda )$.

## Comments (0)