The Stacks project

Lemma 63.5.4. Let $f : X \to Y$ and $g : Y \to Z$ be locally quasi-finite morphisms. Let $w_ f : X \to \mathbf{Z}$ be a weighting of $f$ and let $w_ g : Y \to \mathbf{Z}$ be a weighting of $g$. For $K \in D(Z_{\acute{e}tale}, \Lambda )$ the composition

\[ (g \circ f)_!(g \circ f)^{-1}K = g_! f_! f^{-1} g^{-1}K \xrightarrow {g_! \text{Tr}_{f, w_ f, g^{-1}K}} g_!g^{-1}K \xrightarrow {\text{Tr}_{g, w_ g, K}} K \]

is equal to $\text{Tr}_{g \circ f, w_{g \circ f}, K}$ where $w_{g \circ f}(x) = w_ f(x) w_ g(f(x))$.

Proof. We have $(g \circ f)_! = g_! \circ f_!$ by Lemma 63.4.12. In More on Morphisms, Lemma 37.75.5 we have seen that $w_{g \circ f}$ is a weighting for $g \circ f$ so the statement makes sense. To check equality compute on stalks. Details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GL3. Beware of the difference between the letter 'O' and the digit '0'.