Lemma 63.5.4. Let f : X \to Y and g : Y \to Z be locally quasi-finite morphisms. Let w_ f : X \to \mathbf{Z} be a weighting of f and let w_ g : Y \to \mathbf{Z} be a weighting of g. For K \in D(Z_{\acute{e}tale}, \Lambda ) the composition
is equal to \text{Tr}_{g \circ f, w_{g \circ f}, K} where w_{g \circ f}(x) = w_ f(x) w_ g(f(x)).
Comments (0)