Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 10.20.2. Let $R$ be a ring, let $S \subset R$ be a multiplicative subset, let $I \subset R$ be an ideal, and let $M$ be a finite $R$-module. If $x_1, \ldots , x_ r \in M$ generate $S^{-1}(M/IM)$ as an $S^{-1}(R/I)$-module, then there exists an $f \in S + I$ such that $x_1, \ldots , x_ r$ generate $M_ f$ as an $R_ f$-module.1

Proof. Special case $I = 0$. Let $y_1, \ldots , y_ s$ be generators for $M$ over $R$. Since $S^{-1}M$ is generated by $x_1, \ldots , x_ r$, for each $i$ we can write $y_ i = \sum (a_{ij}/s_{ij})x_ j$ in $S^{-1}M$ for some $a_{ij} \in R$ and $s_{ij} \in S$. Multiplying by the product $s \in S$ of the $s_{ij}$ we see that $sy_ i = \sum a'_{ij}x_ j$ in $S^{-1}M$ for some $a'_{ij} \in R$. This in turn means there exist $t_ i \in S$ such that $t_ isy_ i = \sum t_ ia'_{ij}x_ j$ in $M$. Thus if $t \in S$ is the product of the $t_ i$, then we see that $y_ i$ is in the $R_{st}$-submodule generated by $x_1, \ldots , x_ r$ of $M_{st}$. Hence $x_1, \ldots , x_ r$ generates $M_{st}$.

General case. By the special case, we can find an $s \in S$ such that $x_1, \ldots , x_ r$ generate $(M/IM)_ s$ over $(R/I)_ s$. By Lemma 10.20.1 we can find a $g \in 1 + I_ s \subset R_ s$ such that $x_1, \ldots , x_ r$ generate $(M_ s)_ g$ over $(R_ s)_ g$. Write $g = 1 + i/s'$. Then $f = ss' + is$ works; details omitted. $\square$

[1] Special cases: (I) $I = 0$. The lemma says if $x_1, \ldots , x_ r$ generate $S^{-1}M$, then $x_1, \ldots , x_ r$ generate $M_ f$ for some $f \in S$. (II) $I = \mathfrak p$ is a prime ideal and $S = R \setminus \mathfrak p$. The lemma says if $x_1, \ldots , x_ r$ generate $M \otimes _ R \kappa (\mathfrak p)$ then $x_1, \ldots , x_ r$ generate $M_ f$ for some $f \in R$, $f \not\in \mathfrak p$.

Comments (2)

Comment #10017 by F. Aurelien on

The proof of the special case of Lemma 0GLX is not true as written. An equality in does not necessarily imply the same equality in . A small modification solves the problem (see David Lui's comment in https://math.stackexchange.com/questions/3895881/geometric-nakayamas-lemma) : for each , we can write wich implies the existence of such that . Let be the product of the ; then this time works.

There are also:

  • 6 comment(s) on Section 10.20: Nakayama's lemma

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.