Lemma 10.20.2. Let $R$ be a ring, let $S \subset R$ be a multiplicative subset, let $I \subset R$ be an ideal, and let $M$ be a finite $R$-module. If $x_1, \ldots , x_ r \in M$ generate $S^{-1}(M/IM)$ as an $S^{-1}(R/I)$-module, then there exists an $f \in S + I$ such that $x_1, \ldots , x_ r$ generate $M_ f$ as an $R_ f$-module.1
Proof. Special case $I = 0$. Let $y_1, \ldots , y_ s$ be generators for $M$ over $R$. Since $S^{-1}M$ is generated by $x_1, \ldots , x_ r$, for each $i$ we can write $y_ i = \sum (a_{ij}/s_{ij})x_ j$ in $S^{-1}M$ for some $a_{ij} \in R$ and $s_{ij} \in S$. Multiplying by the product $s \in S$ of the $s_{ij}$ we see that $sy_ i = \sum a'_{ij}x_ j$ in $S^{-1}M$ for some $a'_{ij} \in R$. This in turn means there exist $t_ i \in S$ such that $t_ isy_ i = \sum t_ ia'_{ij}x_ j$ in $M$. Thus if $t \in S$ is the product of the $t_ i$, then we see that $y_ i$ is in the $R_{st}$-submodule generated by $x_1, \ldots , x_ r$ of $M_{st}$. Hence $x_1, \ldots , x_ r$ generates $M_{st}$.
General case. By the special case, we can find an $s \in S$ such that $x_1, \ldots , x_ r$ generate $(M/IM)_ s$ over $(R/I)_ s$. By Lemma 10.20.1 we can find a $g \in 1 + I_ s \subset R_ s$ such that $x_1, \ldots , x_ r$ generate $(M_ s)_ g$ over $(R_ s)_ g$. Write $g = 1 + i/s'$. Then $f = ss' + is$ works; details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #10017 by F. Aurelien on
Comment #10520 by Stacks Project on
There are also: