Lemma 10.20.2. Let R be a ring, let S \subset R be a multiplicative subset, let I \subset R be an ideal, and let M be a finite R-module. If x_1, \ldots , x_ r \in M generate S^{-1}(M/IM) as an S^{-1}(R/I)-module, then there exists an f \in S + I such that x_1, \ldots , x_ r generate M_ f as an R_ f-module.1
Proof. Special case I = 0. Let y_1, \ldots , y_ s be generators for M over R. Since S^{-1}M is generated by x_1, \ldots , x_ r, for each i we can write y_ i = \sum (a_{ij}/s_{ij})x_ j for some a_{ij} \in R and s_{ij} \in S. Let s \in S be the product of all of the s_{ij}. Then we see that y_ i is contained in the R_ s-submodule of M_ s generated by x_1, \ldots , x_ r. Hence x_1, \ldots , x_ r generates M_ s.
General case. By the special case, we can find an s \in S such that x_1, \ldots , x_ r generate (M/IM)_ s over (R/I)_ s. By Lemma 10.20.1 we can find a g \in 1 + I_ s \subset R_ s such that x_1, \ldots , x_ r generate (M_ s)_ g over (R_ s)_ g. Write g = 1 + i/s'. Then f = ss' + is works; details omitted. \square
Comments (1)
Comment #10017 by F. Aurelien on
There are also: