Lemma 17.20.4. Let f : X \to Y be a morphism of ringed spaces. Let \mathcal{F} be an \mathcal{O}_ X-module flat over Y. Then the functor
is exact.
Lemma 17.20.4. Let f : X \to Y be a morphism of ringed spaces. Let \mathcal{F} be an \mathcal{O}_ X-module flat over Y. Then the functor
is exact.
Proof. This is true because f^*\mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{F} = f^{-1}\mathcal{G} \otimes _{f^{-1}\mathcal{O}_ Y} \mathcal{F}, the functor f^{-1} is exact, and \mathcal{F} is a flat f^{-1}\mathcal{O}_ Y-module. \square
Comments (0)