The Stacks project

Lemma 35.10.6. Let $S$ be a scheme.

  1. The category $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ has colimits and they agree with colimits in the categories $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, and $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.

  2. Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ the tensor products $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$ computed in $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, or $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.

  3. Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ with $\mathcal{F}$ finite locally free (in fppf, or equivalently étale, or equivalently Zariski topology) the internal homs $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ computed in $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, or $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.

Proof. This lemma collects the results shown above in a slightly different manner. First of all, by Lemma 35.10.4 we already know the output of the construction in (1), (2), or (3) ends up in $\mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$. It remains to show in each case that the result is independent of the topology used. The key to this is that the equivalence $\mathit{QCoh}(\mathcal{O}_ S) \to \mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$, $\mathcal{F} \mapsto \mathcal{F}^ a$ of Proposition 35.8.9 is given by the same formula independent of the choice of the topology $\tau \in \{ Zariski, {\acute{e}tale}, fppf\} $.

Proof of (1). Let $\mathcal{I} \to \mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Write $\mathcal{F}_ i = \mathcal{G}_ i^ a$ so we get a diagram $\mathcal{I} \to \mathit{QCoh}(\mathcal{O}_ S)$. Then $\mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i = (\mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i)^ a$ in $\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ for $\tau \in \{ Zariski, {\acute{e}tale}, fppf\} $ by Lemma 35.10.2. This proves (1).

Proof of (2). Write $\mathcal{F} = \mathcal{H}^ a$ and $\mathcal{G} = (\mathcal{I})^ a$ with $\mathcal{H}$ and $\mathcal{I}$ quasi-coherent on $S$. Then $\mathcal{F} \otimes _\mathcal {O} \mathcal{G} = (\mathcal{H} \otimes _\mathcal {O} \mathcal{I})^ a$ in $\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ for $\tau \in \{ Zariski, {\acute{e}tale}, fppf\} $ by Lemma 35.10.2. This proves (2).

Proof of (3). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$. Write $\mathcal{F} = \mathcal{H}^ a$ with $\mathcal{H}$ quasi-coherent on $S$. By Lemma 35.8.10 we have

\begin{align*} \mathcal{F}\text{ finite locally free in fppf topology} & \Leftrightarrow \mathcal{H}\text{ finite locally free on }S \\ & \Leftrightarrow \mathcal{F}\text{ finite locally free in étale topology} \\ & \Leftrightarrow \mathcal{H}\text{ finite locally free on }S \\ & \Leftrightarrow \mathcal{F}\text{ finite locally free in Zariski topology} \end{align*}

This explains the parenthetical statement of part (3). Now, if these equivalent conditions hold, then $\mathcal{H}$ is finite locally free. The construction of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ in Modules on Sites, Section 18.27 depends only on $\mathcal{F}$ and $\mathcal{G}$ as presheaves of modules (only whether the output $\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ is a sheaf depends on whether $\mathcal{F}$ and $\mathcal{G}$ are sheaves). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GNE. Beware of the difference between the letter 'O' and the digit '0'.