Lemma 35.10.6. Let $S$ be a scheme.
The category $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ has colimits and they agree with colimits in the categories $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, and $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.
Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ the tensor products $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$ computed in $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, or $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.
Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ with $\mathcal{F}$ finite locally free (in fppf, or equivalently étale, or equivalently Zariski topology) the internal homs $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ computed in $\textit{Mod}((\mathit{Sch}/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\mathit{Sch}/S)_{\acute{e}tale}, \mathcal{O})$, or $\textit{Mod}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\mathit{QCoh}((\mathit{Sch}/S)_{fppf}, \mathcal{O})$.
Comments (0)