Lemma 78.13.4. Let $B \to S$ be as in Section 78.3. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. Assume that

1. $U$, $R$ are Noetherian,

2. $s, t$ are flat, quasi-compact, and quasi-separated.

Then every quasi-coherent module $(\mathcal{F}, \alpha )$ on $(U, R, s, t, c)$ is a filtered colimit of coherent modules.

Proof. We will use the characterization of Cohomology of Spaces, Lemma 69.12.2 of coherent modules on locally Noetherian algebraic spaces without further mention. We can write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{H}_ i$ as the filtered colimit of coherent submodules $\mathcal{H}_ i \subset \mathcal{F}$, see Cohomology of Spaces, Lemma 69.15.1. Given a quasi-coherent sheaf $\mathcal{H}$ on $U$ we denote $(s_*t^*\mathcal{H}, \alpha )$ the quasi-coherent sheaf on $(U, R, s, t, c)$ of Lemma 78.13.1. Consider the adjunction map $(\mathcal{F}, \beta ) \to (s_*t^*\mathcal{F}, \alpha )$ in $\mathit{QCoh}(U, R, s, t, c)$, see Remark 78.13.2. Set

$(\mathcal{F}_ i, \beta _ i) = (\mathcal{F}, \beta ) \times _{(s_*t^*\mathcal{F}, \alpha )} (s_*t^*\mathcal{H}_ i, \alpha )$

in $\mathit{QCoh}(U, R, s, t, c)$. Since restriction to $U$ is an exact functor on $\mathit{QCoh}(U, R, s, t, c)$ by the proof of Lemma 78.12.6 we obtain a pullback diagram

$\xymatrix{ \mathcal{F} \ar[r] & s_*t^*\mathcal{F} \\ \mathcal{F}_ i \ar[r] \ar[u] & s_*t^*\mathcal{H}_ i \ar[u] }$

in other words $\mathcal{F}_ i = \mathcal{F} \cap s_*t^*\mathcal{H}_ i$. By the description of the adjunction map in Remark 78.13.2 this diagram is isomorphic to the diagram

$\xymatrix{ \mathcal{F} \ar[r] & s_*s^*\mathcal{F} \\ \mathcal{F}_ i \ar[r] \ar[u] & s_*t^*\mathcal{H}_ i \ar[u] }$

where the right vertical arrow is the result of applying $s_*$ to the map

$t^*\mathcal{H}_ i \to t^*\mathcal{F} \xrightarrow {\beta } s^*\mathcal{F}$

This arrow is injective as $t$ is a flat morphism. It follows that $\mathcal{F}_ i$ is coherent by Lemma 78.13.3. Finally, because $s$ is quasi-compact and quasi-separated we see that $s_*$ commutes with colimits (see Cohomology of Schemes, Lemma 30.6.1). Hence $s_*t^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits s_*t^*\mathcal{H}_ i$ and hence $(\mathcal{F}, \beta ) = \mathop{\mathrm{colim}}\nolimits (\mathcal{F}_ i, \beta _ i)$ as desired. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).