Remark 91.7.5. Let f : (X, \mathcal{O}_ X) \to (S, \mathcal{O}_ S) and \mathcal{G} be as in Lemma 91.7.4. Consider an extension 0 \to \mathcal{G} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 as in the lemma. We can choose a sheaf of sets \mathcal{E} and a commutative diagram
such that f^{-1}\mathcal{O}_ S[\mathcal{E}] \to \mathcal{O}_ X is surjective with kernel \mathcal{J}. (For example you can take any sheaf of sets surjecting onto \mathcal{O}_{X'}.) Then
See Modules, Section 17.31 and in particular Lemma 17.31.2. Of course \alpha ' determines a map f^{-1}\mathcal{O}_ S[\mathcal{E}] \to \mathcal{O}_{X'} which in turn determines a map
which in turn determines the element of \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits (\alpha ), \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/S}, \mathcal{G}) corresponding to \mathcal{O}_{X'} by the bijection of the lemma.
Comments (0)