Lemma 103.14.3. Let $\mathcal{X}$ be an algebraic stack. Notation as in Lemma 103.14.2.

1. For an abelian sheaf $\mathcal{F}$ on $\mathcal{X}_{\acute{e}tale}$ we have

1. $H^ p(\mathcal{X}_{\acute{e}tale}, \mathcal{F}) = H^ p(\mathcal{X}_{lisse,{\acute{e}tale}}, g^{-1}\mathcal{F})$, and

2. $H^ p(x, \mathcal{F}) = H^ p(\mathcal{X}_{lisse,{\acute{e}tale}}/x, g^{-1}\mathcal{F})$ for any object $x$ of $\mathcal{X}_{lisse,{\acute{e}tale}}$.

The same holds for sheaves of modules.

2. For an abelian sheaf $\mathcal{F}$ on $\mathcal{X}_{fppf}$ we have

1. $H^ p(\mathcal{X}_{fppf}, \mathcal{F}) = H^ p(\mathcal{X}_{flat,fppf}, g^{-1}\mathcal{F})$, and

2. $H^ p(x, \mathcal{F}) = H^ p(\mathcal{X}_{flat,fppf}/x, g^{-1}\mathcal{F})$ for any object $x$ of $\mathcal{X}_{flat,fppf}$.

The same holds for sheaves of modules.

Proof. Part (1)(a) follows from Sheaves on Stacks, Lemma 96.23.3 applied to the inclusion functor $\mathcal{X}_{lisse,{\acute{e}tale}} \to \mathcal{X}_{\acute{e}tale}$. Part (1)(b) follows from part (1)(a). Namely, if $x$ lies over the scheme $U$, then the site $\mathcal{X}_{\acute{e}tale}/x$ is equivalent to $(\mathit{Sch}/U)_{\acute{e}tale}$ and $\mathcal{X}_{lisse,{\acute{e}tale}}$ is equivalent to $U_{lisse,{\acute{e}tale}}$. Part (2) is proved in the same manner. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).