Lemma 103.17.7. Let \mathcal{X} be a locally Noetherian algebraic stack. Then \textit{Coh}(\mathcal{O}_\mathcal {X}) is a Serre subcategory of \mathit{QCoh}(\mathcal{O}_\mathcal {X}). Let \varphi : \mathcal{F} \to \mathcal{G} be a map of quasi-coherent \mathcal{O}_\mathcal {X}-modules. We have
if \mathcal{F} is coherent and \varphi surjective, then \mathcal{G} is coherent,
if \mathcal{F} is coherent, then \mathop{\mathrm{Im}}(\varphi ) is coherent, and
if \mathcal{G} coherent and \mathop{\mathrm{Ker}}(\varphi ) parasitic, then \mathcal{F} is coherent.
Comments (0)