Lemma 37.37.4. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of schemes. Assume
$Y$ is integral and geometrically unibranch,
$g \circ f$ is étale,
every irreducible component of $X$ dominates $Y$.
Then $f$ is étale and $g$ is étale at every point in the image of $f$.
Comments (0)