The Stacks project

Lemma 57.12.4. Let $k$ be a field. Let $X$, $Y$ be proper schemes over $k$. Assume $X$ is regular. Let $F, G : D_{perf}(\mathcal{O}_ X) \to D_{perf}(\mathcal{O}_ Y)$ be $k$-linear exact functors such that

  1. $F(\mathcal{F}) \cong G(\mathcal{F})$ for any coherent $\mathcal{O}_ X$-module $\mathcal{F}$ with $\dim (\text{Supp}(\mathcal{F})) = 0$,

  2. $F$ is fully faithful.

Then the essential image of $G$ is contained in the essential image of $F$.

Proof. Recall that $F$ and $G$ have both adjoints, see Lemma 57.7.1. In particular the essential image $\mathcal{A} \subset D_{perf}(\mathcal{O}_ Y)$ of $F$ satisfies the equivalent conditions of Derived Categories, Lemma 13.40.7. We claim that $G$ factors through $\mathcal{A}$. Since $\mathcal{A} = {}^\perp (\mathcal{A}^\perp )$ by Derived Categories, Lemma 13.40.7 it suffices to show that $\mathop{\mathrm{Hom}}\nolimits _ Y(G(M), N) = 0$ for all $M$ in $D_{perf}(\mathcal{O}_ X)$ and $N \in \mathcal{A}^\perp $. We have

\[ \mathop{\mathrm{Hom}}\nolimits _ Y(G(M), N) = \mathop{\mathrm{Hom}}\nolimits _ X(M, G_ r(N)) \]

where $G_ r$ is the right adjoint to $G$. Thus it suffices to prove that $G_ r(N) = 0$. Since $G(\mathcal{F}) \cong F(\mathcal{F})$ for $\mathcal{F}$ as in (1) we see that

\[ \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}, G_ r(N)) = \mathop{\mathrm{Hom}}\nolimits _ Y(G(\mathcal{F}), N) = \mathop{\mathrm{Hom}}\nolimits _ Y(F(\mathcal{F}), N) = 0 \]

as $N$ is in the right orthogonal to the essential image $\mathcal{A}$ of $F$. Of course, the same vanishing holds for $\mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}, G_ r(N)[i])$ for any $i \in \mathbf{Z}$. Thus $G_ r(N) = 0$ by Lemma 57.11.3 and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GX0. Beware of the difference between the letter 'O' and the digit '0'.