Lemma 21.43.2. In the situation above, the subcategory $\mathit{QC}(\mathcal{O})$ is a strictly full, saturated, triangulated subcategory of $D(\mathcal{O})$ preserved by arbitrary direct sums.
Proof. Let $U$ be an object of $\mathcal{C}$. Since the topology on $\mathcal{C}$ is chaotic, the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ is exact and commutes with direct sums. Hence the exact functor $K \mapsto R\Gamma (U, K)$ is computed by representing $K$ by any complex $\mathcal{F}^\bullet $ of $\mathcal{O}$-modules and taking $\mathcal{F}^\bullet (U)$. Thus $R\Gamma (U, -)$ commutes with direct sums, see Injectives, Lemma 19.13.4. Similarly, given a morphism $U \to V$ of $\mathcal{C}$ the derived tensor product functor $- \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) : D(\mathcal{O}(V)) \to D(\mathcal{O}(U))$ is exact and commutes with direct sums. The lemma follows from these observations in a straightforward manner; details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)