Lemma 20.36.1. Let (X, \mathcal{O}_ X) be a ringed space. Let f \in \Gamma (X, \mathcal{O}_ X). Let
\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1
be inverse system of \mathcal{O}_ X-modules. Consider the conditions
for all n \geq 1 the map f : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1} factors through \mathcal{F}_{n + 1} \to \mathcal{F}_ n to give a short exact sequence 0 \to \mathcal{F}_ n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0,
for all n \geq 1 the map f^ n : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1} factors through \mathcal{F}_{n + 1} \to \mathcal{F}_1 to give a short exact sequence 0 \to \mathcal{F}_1 \to \mathcal{F}_{n + 1} \to \mathcal{F}_ n \to 0
there exists an \mathcal{O}_ X-module \mathcal{G} which is f-divisible such that \mathcal{F}_ n = \mathcal{G}[f^ n], and
there exists an \mathcal{O}_ X-module \mathcal{F} which is f-torsion free such that \mathcal{F}_ n = \mathcal{F}/f^ n\mathcal{F}.
Then (4) \Rightarrow (3) \Leftrightarrow (2) \Leftrightarrow (1).
Proof.
We omit the proof of the equivalence of (1) and (2). We omit the proof that (3) implies (1). Given \mathcal{F}_ n as in (1) to prove (3) we set \mathcal{G} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ n where the maps \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to \ldots are as in (1). The map f : \mathcal{G} \to \mathcal{G} is surjective as the image of \mathcal{F}_{n + 1} \subset \mathcal{G} is \mathcal{F}_ n \subset \mathcal{G} by the short exact sequence (1). Thus \mathcal{G} is an f-divisible \mathcal{O}_ X-module with \mathcal{F}_ n = \mathcal{G}[f^ n].
Assume given \mathcal{F} as in (4). The map \mathcal{F}/f^{n + 1}\mathcal{F} \to \mathcal{F}/f^ n\mathcal{F} is always surjective with kernel the image of the map \mathcal{F}/f\mathcal{F} \to \mathcal{F}/f^{n + 1}\mathcal{F} induced by multiplication with f^ n. To verify (2) it suffices to see that the kernel of f^ n : \mathcal{F} \to \mathcal{F}/f^{n + 1}\mathcal{F} is f\mathcal{F}. To see this it suffices to show that given sections s, t of \mathcal{F} over an open U \subset X with f^ ns = f^{n + 1}t we have s = ft. This is clear because f : \mathcal{F} \to \mathcal{F} is injective as \mathcal{F} is f-torsion free.
\square
Comments (0)